
www.manaraa.com

A new Encryption and Hashing Scheme for the

Security Architecture for Microprocessors

Jörg Platte, Raúl Durán Dı́az, and Edwin Naroska

Institut für Roboterforschung, Abteilung Informationstechnik,
Universität Dortmund (Germany)

{joerg.platte,edwin.naroska}@udo.edu, raul.duran@uah.es

Abstract. In this paper we revisit SAM, a security architecture for
microprocessors that provides memory encryption and memory verifica-
tion using hash values, including a summary of its main features and
an overview of other related architectures. We analyze the security of
SAM architecture as originally proposed, pointing out some weaknesses
in security and performance. To overcome them, we supply another hash-
ing and protection schemes which strengthen the security and improve
the performance of the first proposal. Finally, we present some experi-
mental results comparing the old and new schemes.

1 Introduction

Protecting software is becoming more important for the future and therefore,
efficient protection schemes are required. These schemes must provide a strong
protection without requiring too many changes from the programmers point of
view to be able to reuse existing code. Some processor extensions, like AEGIS
[1] and SAM [2, 3], have been built to provide a secure execution environment
for programs. Using these extensions, a program can be protected to prevent
program code and data based attacks as well as runtime attacks. Hence, they
are suitable to implement efficient copy protection schemes which cannot be
removed or bypassed. Additionally, they can be used to protect program code
and data disclosure by using encryption of memory contents and they must be
able to protect against software based attacks (e. g., administrator access) and
hardware based attacks (e. g., bus sniffing).

Protecting data or program disclosure is important in case of remote execu-
tion of programs. For example, in GRID computing, programs can be executed
on many different computers spread all over the world and the submitter of
these programs may not trust all remote systems. Using a security extension,
the GRID can be used even for sensitive simulation data or secret algorithms.

This paper provides a security analysis of SAM’s security functions and pro-
poses modifications to its hashing and encryption algorithms. Using this modi-
fied scheme the security can be enhanced and the hashing performance increased
compared with the old scheme.

Section 2 provides a brief overview about the SAM security architecture.
Other security architectures are presented in section 3. Section 4 analyzes the

www.manaraa.com

encryption and hashing functions and provides an optimized version. In sections
5 and 6 the simulation environment and the computed results are presented.
Section 7 concludes this paper.

2 SAM overview

SAM provides a secure execution environment for programs based on a standard
processor design and a standard operating system. SAM aims at preventing
tampering attempts as well as data and program disclosure.

The next paragraphs are providing a brief description of SAM’s main at-
tributes. A more detailed architectural description can be found in [2] and the
design of the caches in [3].

The current SAM processor design is based on a SPARC V8 compatible CPU
and was designed to be an optional extension. Hence, no secured bootstrapping
or a persistent trusted operating system core is required to run SAM protected
programs. Both protected and normal unprotected programs can be executed in a
multitasking environment and small parts of the operating system are protected
only while executing protected programs.

The processor core consists of an enhanced ALU supporting additional secu-
rity instructions, an L1 data and instruction cache as well as an L2 cache. All
data inside this core is trusted whereas all data outside is assumed to be un-
trusted. Hence, all data entering the L2 cache must be verified whereas all data
written back to memory has to be protected against modifications and data dis-
closure. Data modifications are detectable by computing hashes for all protected
cache lines. Prevention of data disclosure is achieved by transparent encryption
of memory contents written to memory by the L2 cache. SAM uses the hashes
both for memory protection and as a counter for a counter mode encryption
algorithm to reduce the memory footprint. The hashing and encryption schemes
are described in detail in section 4.

SAM uses a per process fixed virtual memory layout with two partly over-
lapping virtual address ranges. In the protected region all data is protected
and verified by additional hash values and in the encrypted region, all data is
additionally encrypted. All instructions located in protected memory regions
(protected instructions) can access the decrypted memory contents in encrypted
regions. Any other instruction can only access the encrypted data. Using virtual
addresses simplifies paging of unused parts of the program or the hash tree.

SAM’s caches have been suitably modified to provide these additional se-
curity functions. Additional security bits reflect the protection status for each
cache line and dedicated security queues are used to hide additional latencies
caused by verification and encryption/decryption. The memory write queues are
computing hash values and encrypting cache lines to be written back to memory
while the cache is able to process requests. A check queue contains all unverified
cache lines and calculates hashes for these data in order to compare them with
the ones in memory and detect memory based attacks.

www.manaraa.com

Check-
Queue

L2 Cache Cache-Hash-
Queue

Memory- Queues
Unprotected Protected Encrypted

writes hashes

writes
hashes

reads
hashes

writes cache-lines
writes

cache-lines

Fig. 1. Queue dependencies

All queues have a fixed size and
therefore, stalls may occur when any
of the queues is full. To prevent dead-
locks, the L2-cache-bus arbiter moni-
tors all queues and suppresses exter-
nal cache accesses when the number of
queue entries exceeds a given thresh-
old. Figure 1 shows the relations be-
tween the L2 cache and the queues. In particular the check queue may exceed
its threshold more likely, because each queue access may result in two additional
queue entries, when requesting a hash results in a cache line replacement.

While SAM ensures that all internal data like variables, constants and func-
tions are protected, all external data read from files or sockets could be poten-
tially untrusted. Hence, the programmer has to check all external data by using
suitable cryptographic protocols.

3 Related Work

Using cryptography to protect algorithms and data in a tamper resistant envi-
ronment is not a new approach. Secure co-processors have been proposed which
provide a tamper-sensing and tamper-responding secure environment. These pro-
cessors can be implemented on smart cards (for example, [4]) or as a co-processor
shown by [5] in a PC (for example, the IBM PCIXCC [6]). These co-processors
provide a secure environment. But they are limited in terms of processor speed
and memory and often, programs must be significantly modified to be suitable
for this kind of co-processors. Therefore, they do not provide an easy-to-use and
expandable secure environment.

Another more related approach is the AEGIS architecture [1], the successor
of the XOM architecture [7]. Like SAM, AEGIS provides transparent data and
instruction encryption, decryption and verification of memory contents.

In AEGIS, a program consists of unencrypted, encrypted and protected parts
and the architecture provides secure transitions between these parts. Variables
and functions can be assigned to these regions at compile time by the program-
mer. Hence, the programmer needs a profound knowledge about possible attacks
to not leak secure data.

In order to prevent software based attacks, AEGIS requires a special boot-
strapping mechanism to load a security kernel that has access to the page table
and other sensitive information. Memory contents are protected by hash trees
based on their physical address. This requires free pages at subsequent physical
addresses and prevents paging of these data without reencrypting them.

Each time a new program is started AEGIS first computes a hash over all
secured program related data. This hash is then used in conjunction with proces-
sor and operating system hashes to decrypt the program. The initial hashing of
a program is a time consuming and complex task, which has been implemented
by executing internal microcode instead of a direct hardware implementation.

www.manaraa.com

In addition to the hash values, AEGIS suggests the usage of 32 bit coun-
ters to encrypt data resulting in approx. 6 % additional memory consumption.
This potentially gives rise to more misses during memory operations. Depending
on the memory access this counter can overflow resulting in a time consuming
reencryption of all program related data with a new key. Longer counters can
prevent this for most programs, but they consume more memory.

4 Hashing scheme and encryption

In this section, we first revisit the hashing scheme and data encryption proposed
in [2, 3], describing some weaknesses in security and performance. Then we pro-
pose some modifications on both the hashing and encryption schemes which
improve the performance and strengthen the security.

4.1 Previous hashing and encryption schemes

In general, a hash function h with round function f can be defined as follows:

H0 = Iv, Hi = f(xi, Hi−1), h(x) = Hm, i = 1, 2, 3, . . . , m (1)

where Iv stands for initialization vector and xi are the m fixed-length blocks
which comprise the input x (see, for example, [8, §9.4]).

Hashing scheme First we explain how to hash one cache line as per paper
[2]. A cache line C has 64 bytes (512 bits), further divided into four 16-byte
(128-bit) blocks, for convenience. Each program is assigned a 128-bit key, ks, at
compile time.

A hash will be generated using AES as rounding function and a length of
128 bits for each block following the algorithm described in [9]. The value to be
hashed is

C′ = C ⊕ (ks||0
352||V), (2)

where || represents concatenation of bits and ⊕ is the XOR operator, ks is the
secret key, and V is the 32-bit cache line virtual address. This operation ensures
that no data can be copied to another virtual address and that any two identical
data hash to different values when located at different virtual addresses. The
key ks makes the hash value dependent on a secret value as well, and serves
two purposes: firstly, it avoids possible exploitation of the hash value to extract
information about the hashed contents, and secondly, several compilations of the
same program will hash to different values, since ks is randomly chosen for each
compilation. Let C′ = (X1||X2||X3||X4) be the value to hash, where each Xi is
a 128-bit wide block, and let

f(x, H) = Ex(H) ⊕ H (3)

be the rounding function, where Ek(x) represents the application to x of the
AES function with key k. Then the hash is computed as follows:

H0 = 2128−1, Hi = EXi
(Hi−1)⊕Hi−1, H = H5 = EH4

(H4)⊕H4, i = 1, 2, 3, 4

www.manaraa.com

Observe that this computation adds an extra step at the end, when compared
with the general hashing equations (1). The authors claim in [9] that this step
is necessary since, otherwise, “an attacker could take a hash without knowing
the corresponding file (i.e., the value to be hashed), and use it to generate the
hash of a file which is the original file with an appended bitstring of arbitrary
content.” This hash generation needs five applications of the AES function.

However, data integrity cannot be guaranteed using only the previous scheme,
because replay attacks are still possible. For this reason, Merkle trees (see [10])
are used, whereby each hash cache line, consisting of four hashes, is in its turn
hashed and stored in a sort of tree manner. The uppermost level is called the
root hash and consists only of one hash value, which protects the last four hash
values, and it is stored permanently inside the processor. See [2, 3] for more
details.

Data encryption Each cache line can be further encrypted using AES with
the secret key ks in counter mode (see [11]). In this mode, an arbitrary value (the
counter) is encrypted with the key ks and XORed with the plain data to encrypt,
in this case, the cache line. The hash value described above is used as a counter.
However, each cache line consists of four blocks, and so one hash value does not
suffice as a counter, since this would mean reusing the same counter for four
different blocks. To avoid this problem, it was suggested in [2] to XOR the hash
value with four arbitrary (but architecturally fixed) bit patterns, R1, . . . , R4,
which could thus supply four different counter values.

Performance evaluation The obvious drawback of the described algorithm
is that it is completely serial. Actually, the AES unit must used five times to
compute the hash of one cache line. Therefore, the speed of one cache line hash
computation can be only improved with a faster AES unit.

Security analysis The definition of C′ as per equation (2) presents the
following undesirable property: two different cache lines, C1, C2 at virtual ad-
dresses V1, and V2, such that C1 ⊕ V1 = C2 ⊕ V2, will produce the same C′ and,
hence, the same hash value. But, then, this means that if C1 and C2 are to be
encrypted, they will use the same counter, which is completely unsafe.

Besides, the key ks serves two different purposes: it is used both to generate C′

and to encrypt data. It would be advisable to avoid this, just in case unexpected
cryptographic primitive interactions may arise.

Last, it would be very interesting to get rid of the four arbitrary bit patterns
R1, . . . , R4, if possible.

4.2 New proposal for hashing and encryption

The purpose in this section is to describe our new proposal for both the hashing
and the encryption schemes, which improves the speed of operation, while even
increasing the level of security.

New hashing The new hashing scheme has been suggested in [12, §2.4.4].
The idea is to replace the linear structure by a tree structure. This scheme, while
not new, allows for a substantial speed-up in the evaluation of the hash function,
which is now reduced to O(log m), where m is the number of blocks to hash.

www.manaraa.com

Suppose, as above, that C is the cache line to hash. First of all we compute
C′ = C ⊕ r ⊕ V , where r stands for a random value generated at compile time,
and V is the virtual address of the cache line. The reasons to use the values r
and V are the same as in the old scheme. Note, however, that the computation
of C′ does not preclude the problem that two different cache lines located at
different virtual addresses could receive the same hash value. This problem will
be addressed below.

We will use the same rounding function described in equation (3). Assuming
again that C′ = (X1||X2||X3||X4), where each Xi is a 128-bit wide block, the
hash is computed as follows. First the following operations are performed in
parallel:

H1 = EX1
(X2) ⊕ X2, H2 = EX3

(X4) ⊕ X4,

where Ek(x) represents, as before, the application of the AES function to x with
key k. When the previous step is over, the following computation is carried out:

H = EH1
(H2) ⊕ H2,

Remark that in this case only two serial applications of AES are needed, versus
five applications in the old scheme; this means a speed-up of roughly1 5/2. Last,
observe that a final AES application is not needed (and thus can be saved), since
the input has a fixed size and, therefore, the attack claimed by the authors in
[9] cannot succeed in this particular case.

New encryption In this new scheme, AES in counter mode will be used, as
before, but in a slightly different manner. First of all, each program will receive
at compile time a base encryption key kb. The encryption will be performed now
at the block level, using a different key to encrypt each block; this encryption
key will be derived from the virtual address of the block to be encrypted, using
kb as a parameter. This “derived key” will be the actual encryption key for the
block to encrypt.

More precisely, let K be the space of encryption keys, let K⋆ be the space of
base keys, and let V be the space of virtual addresses; then, given a block X ,
which belongs to cache line C and is located at virtual address V , the encryption
function is

Egk
b
(V)(H(C)) ⊕ X. (4)

In this equation, g : K⋆ × V → K is a suitable transformation function, such
that, for each value of the parameter kb ∈ K⋆, gkb

(V) supplies a usable AES
encryption key. This function should satisfy the following property: for any kb,
k′

b ∈ K⋆, then there do not exist V , V ′ ∈ V , V 6= V ′, satisfying gkb
(V) = gk′

b
(V ′).

In practice, such function exists since |V| ≪ |K|, but then, of course, the base
key space is smaller than the original, namely, |K⋆| < |K|.

Initially, the requirement of hardware simplicity compels us to use a simple g,
such as XORing kb and V . But, then, the system could be liable to a related-key
attack, as described below.

1 Some clock cycles are needed to initiate the second application of AES in the first
step, so both operations are not strictly parallel.

www.manaraa.com

Security analysis The encryption scheme is based on the use of the counter
mode. As stated in [11], it is required that a unique counter is used for each plain
text block that is ever encrypted under a given key. There is no particular indica-
tion on the counting values, as long as they satisfy the uniqueness requirement.
This makes it possible for us to use the hash values as counters, since the design
of g and the protocol guarantee that they are unique for a given derived key. In
fact, as it is easily checked, they only depend on the contents of the particular
block to be encrypted.

Remark also that the new encryption method eliminates the need for the
constants R1, . . . , R4 described in section 4.1, since the encryption is now per-
formed on a block basis. Besides, the random value r has nothing to do with the
encryption key ks of the old scheme, thus effectively decoupling both operations.

Finally, in order to keep an overall good performance, g should be evaluable
in a short time frame (for example, one clock cycle).

4.3 Revision of some common attacks

We will subsequently revisit some possible attacks.
Random attack The opponent selects a random value and expects the

change will remain undetected. If the hash function has the required random
behavior, the probability of success is 1/2n, where n stands for the number of
bits in the hash. In our case, this attack is not feasible, since we are using 128
bit hashes.

Birthday attack In a group of at least 23 people, the probability that at
least two people have a common birthday is greater than 1/2: this is called
the birthday paradox. This fact inspires the so-called birthday attack, applicable
when an adversary tries to generate a collision. Remember that the hashes are
stored in a Merkle tree fashion, all of them in plain text except for the root
hash, which is kept encrypted. The attacker is then forced to face the problem of
finding a preimage for any of the hashes, since a collision is of no use. Therefore,
this attack is not applicable. Moreover, a random preimage attack on a 128-bit
hash code requires 2128, which can be considered unfeasible.

Related-key attack In this attack, the enemy is allowed to observe the
operation of a cipher under different but mathematically related keys. In our
case, cache lines are liable to hash to the same value under certain conditions, as
stated above. Therefore, it is advisable that the transformation function g used
in equation (4) be selected so as to satisfy the necessary degree of randomness
allowing the different “derived keys” to not disclose any mutual relationship.

5 Simulation Environment

This section briefly describes the simulation environment used to compute the
results presented in section 6. The performance evaluation of different cache con-
figurations is based on the SPEC benchmark suite. All benchmarks are executed
in a virtual machine emulating a SPARC based computer with peripherals like

www.manaraa.com

hard disk, framebuffer and keyboard. This virtual machine is based on the free
system emulator QEMU [13]. QEMU achieves a good performance by translating
all instructions of the guest system to native assembler instructions of the host
system. Hence, all timing and memory access information are lost. Therefore,
QEMU has been extended to add special monitoring instructions during the
translation step to reveal this lost information. They are used to log instruction
fetches, read and write data and I/O accesses by the CPU and memory access
by simulated peripheral devices as well as context switches, interrupts, and the
current clock cycle to a trace file.

Cache property Value

L1 placement direct mapped
L1 line size 32 bytes
L2 placement LRU, 4-way-set
L2 line size 64 bytes

Bus Width Divisor

L1 ↔ L2 cache 128 bit 2
to memory 64 bit 5
L2 cache ↔ Queues 128 bit 2
to AES units 128 bit 2

Table 1. Cache properties

Name L1 size L2 size
AES
units

Check Queue
entries

8-256 8k 256k 5 3
16-1024 16k 1024k 5 3
32-2048 32k 2048k 5 3

Table 2. Cache configurations

This trace file is then used as an input file for the SAM cache simulator.
It simulates an L1 data and instruction cache as well as the L2 cache with
all security related queues as described in section 2 to compute the number
of simulated clock cycles for these operations. Instruction and data access is
passed to the corresponding L1 cache and external device access is simulated by
occupying the memory bus. One limitation of using a trace file is the missing
feedback from the simulator to QEMU.

The cache simulator is fully configurable in terms of cache sizes, bus widths,
number of queue entries and their thresholds, clock divisors to simulate different
clock rates for buses and components like the queues or the caches, memory
latencies or hashing algorithms. The L1 cache runs always with maximum clock
speed and all other components are clocked with divisors based on this clock
rate. Table 1 lists the basic configuration used for all simulations.

For all simulations, all data between the virtual addresses 0x70000000 and
0xf0000000 has been encrypted. The hash tree starts at address 0x1aaaaab0.
A slightly modified Linux kernel has been used for the simulations. The kernel
now starts to allocate memory for the heap starting at address 0x80000000 and
all benchmarks are statically linked to the base address 0x70000000.

For each simulated benchmark 232 instructions have been written to a trace
file after skipping the first 232 instructions, approximately, which correspond
basically to the initialization routines of each benchmark. Using this trace file
a set of different cache configurations has been simulated to obtain the overall
number of simulated cache clock cycles needed for all cache operations. This

www.manaraa.com

set includes a configuration without security extensions which is further used
as a reference for the speedup computation. The trace file does not contain any
hash related data. During the simulation the cache simulator provides a random
mapping of hash values to unused physical pages.

6 Simulation Results

Table 2 gives an overview about the configurations used for all simulations. The
extension HT and HS are used for the tree and the sequential hashing algorithms,
respectively.

0

0,2

0,4

0,6

0,8

1

1,2

bz
ip
2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs
er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

S
p

e
e
d

u
p

32-2048-HT

32-2048-HS

16-1024-HT

16-1024-HS

8-256-HT

8-256-HS

Fig. 2. Results for different cache sizes

Figure 2 compares both the sequential and the tree hashing algorithm for
three different cache configurations. For nearly all configurations the speedup
using the tree algorithm is higher than for the sequential algorithm. Also, the
tree algorithm allows a more effective usage of the available AES units.

Using a larger cache does not always result in higher speedup as can be
seen, for example, in the gcc benchmark2. Further investigation revealed that
the number of cache line replacements (even for the cache configuration without
security extensions) for those benchmarks is very similar for all three simulated
cache configurations though the number of clock cycles is higher for the smaller
caches. As a result, in this case even minor effects like different random mappings
of hash values to physical pages (and therefore different sets) can distort this
result.

2 Remember, that the speedup for each benchmark has been computed in comparison
with an equally configured cache without security extensions.

www.manaraa.com

7 Conclusion

In this paper the cryptographic part of a processor security extension has been
analyzed and optimized. The algorithm used for hash value generation has been
optimized to provide a faster hardware implementation by parallelizing the al-
gorithm and occupying more AES units at the same time. The presented bench-
mark results show that the presented new hashing algorithm further improves
the good performance of the old scheme even without increasing the number of
AES units.

The security analysis of the encryption scheme used by SAM does not pre-
vent hash collisions for all cases. However, the proposed algorithm reduces the
probability of collisions while slightly increasing the overall performance.

As a result, hash values can be used both for memory integrity verification
and as a counter for a counter mode encryption scheme. Thus a significant saving
in memory can be achieved compared to other architectures.

References

1. Suh, G.E.: AEGIS: A Single-Chip Secure Processor. PhD thesis, Massachusetts
Institute of Technology (2005)

2. Platte, J., Naroska, E.: A combined hardware and software architecture for secure
computing. In: CF ’05: Proceedings of the 2nd conference on Computing frontiers,
New York, NY, USA, ACM Press (2005) 280–288

3. Platte, J., Naroska, E., Grundmann, K.: A cache design for a security architecture
for microprocessors (SAM). In Grass, W., Sick, B., Waldschmidt, K., eds.: Lecture
Notes in Computer Science. Volume 3894. (2006) 435 – 449

4. Sun Microsystems: Java card security white paper. http://java.sun.com/

products/javacard/JavaCardSecurityWhitePaper.pdf (2001)
5. Yee, B.: Using secure coprocessors. PhD thesis, Carnegie Mellon University (1994)
6. Arnold, T.W., Van Doorn, L.P.: The IBM PCIXCC: A new cryptographic copro-

cessor for the IBM eServer. IBM Journal of Research and Development 48 (2004)
475–487

7. Lie, D., Thekkath, C.A., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J.C.,
Horowitz, M.: Architectural support for copy and tamper resistant software (2000)

8. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Inc., Boca Raton, FL (1997)

9. Cohen, B., Laurie, B.: AES-hash. http://csrc.nist.gov/CryptoToolkit/modes/
proposedmodes/aes-hash/aeshash.pdf (2001)

10. Merkle, R.C.: Protocols for public key cryptosystems. In IEEE, ed.: IEEE Sym-
posium on Security and Privacy, 1109 Spring Street, Suite 300, Silver Spring, MD
20910, USA, IEEE Computer Society Press (1980) 122–134

11. Dworkin, M.: Recommendation for Block Cipher Modes of Operation. Methods
and Techniques. NIST. (2001)

12. Preneel, B.: Analysis and Design of Cryptographic Hash Functions. PhD thesis,
Katholieke Universiteit Leuven (Belgium) (1993)

13. Bellard, F.: QEMU. http://fabrice.bellard.free.fr/qemu (2005)

